a2 United States Patent

Valtchev et al.

US007251777B1

US 7,251,777 B1
Jul. 31, 2007

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR AUTOMATED
STRUCTURING OF TEXTUAL DOCUMENTS

(75) Inventors: Tsvetomir V. Valtchev, Franklin, W1
(US); Pradeep K Jain, Wind Lake, WI
(Us)

(73) Assignee: HyperVision, Ltd., Franklin, WI (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 398 days.

(21) Appl. No.: 10/826,892
(22) Filed: Apr. 16, 2004

Related U.S. Application Data
(60) Provisional application No. 60/463,587, filed on Apr.

16, 2003.
(51) Imt.CL

GO6F 17/24 (2006.01)

GO6F 17/30 (2006.01)
(52) US.CL e 715/513; 707/6
(58) Field of Classification Search 715/512-513,

715/500, 517, 707/6, 102
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,036,073 B2* 4/2006 Jones et al. 715/517
2002/0143815 Al* 10/2002 Sathercccceevrvnns 707/513
2003/0120686 Al* 6/2003 Kim etal.ccceeeene 707/200
2003/0237048 Al* 12/2003 Jones et al. 715/513
2004/0006744 Al 1/2004 Jones et al.

2004/0205571 Al* 10/2004 Adler et al. 715/513
2004/0205615 Al* 10/2004 Birderccocevvevnnis 715/523
2006/0265689 Al* 11/2006 Kuznetsov et al. 717117

OTHER PUBLICATIONS

Exegenic; “Exegenix Launches New XML Document Conversion
System;” May 20, 2002; pp. 1-2.

Exegenic; “Exegenix Technology FAQ;” Apr. 2003 or earlier; pp.
1-2.

Exegenic; “Intelligent Document Conversion Solutions™;” 2002,
pp. 1-2; Tata Infotech Limited, (no month).

Michael A. Goulde; “Interleaf’s BladeRunner Uses XML to Help
Manage Reusable Content;” Internet Tools and Technologies
Service—e-Bulletin; Aug. 17, 1998; pp. 1-6; Patricia Seybould
Group; Boston, Massachusetts.

Interleaf, Inc.; “Putting XML to Work;” Jul. 1998; pp. 1-12.

(Continued)

Primary Examiner—Don Wong

Assistant Examiner—Hung Tran Vy

(74) Attorney, Agent, or Firm—Michael Best & Friedrich
LLP

(57) ABSTRACT

Disclosed is a method for customizable schema-guided
conversion of plain-text documents, rich-text documents and
textual data records to an XML-compatible structured form.
The method makes substantial use of element content model
definitions from a chosen target XML schema/DTD to
optimize, closely guide, and disambiguate element pattern
matching and recognition. Highly granular structure can be
inferred, in best possible conformance with the schema. One
embodiment operates based on a finite state machine derived
via recursive aggregation of the schema element content
models. Additionally disclosed is a method for automated
document structuring within the environment of an XML-
enabled wordprocessor application. The method entails
using the host’s API to perform element pattern search and
matching and to apply markup to the document in accor-
dance with the inferred XML structure. A GUI framework
integrated in the wordprocessor workspace can be provided
for developing and executing document conversion/struc-
turing definitions.

20 Claims, 15 Drawing Sheets

l ra

Cblain pure XML via

Export XML function

US 7,251,777 B1
Page 2

OTHER PUBLICATIONS

Prescod, Paul; “Introduction to XML Tools;” Apr. 2003 or earlier;
pp. 1-49.

Golfman, Irina; “Structured Content out of Microsoft
Word—Technologies & Tricks;” XML World 2000: The Joy of
Structure; Sep. 6, 2000; Inera Incorporated; pp. 1-11.
Hypervision, LTD.; “WorX™ for Word v3.2: Simplifying the Enter-
prise Authoring Experience;” 2003; pp. 1-2; HyperVision Ltd.
Alschuler, Liora; “Getting the Tags In: Vendors Grapple with
XML-Authoring, Editing and Cleanup;” Seybold Report on Internet
Publishing; Feb. 2001; pp. 1-3; vol. 5, No. 6; Seybold Publications;
Media, Pennsylvania.

Hypervision, Ltd; WorX™ SE Administrator Training Manual
Student Edition; Feb. 2001; pp. 1-75; HyperVision, Ltd.

Hypervision, Ltd; WorX™ SE User Training Manual; Feb. 2001,
pp. 1-99; HyperVision, Ltd.

Exegenix; “Document complexity in XML conversion;” Apr. 2003
or earlier; pp. 1-2.

Exegenix; “Frequently-Asked Questions;” Apr. 2003 or earlier; pp.
1-3.

Exegenix; “Intelligent Document Conversion Solutions™;” 2002,
pp. 1-2; Tata Infotech Limited, (no month).

Exegenix; “The Exegenix™ Conversion System;” 2002; pp. 1-2;
Tata Infotech Limited, (no month).

Exegenix; “Exegenix Raises the Bar on XML Conversion: Interac-
tive, automated XML document conversion now available;” Dec. 9,
2002; pp. 1-2.

“Transforming Engines;” Apr. 2003 or earlier; pp. 1-13.

* cited by examiner

U.S. Patent Jul. 31, 2007 Sheet 1 of 15 US 7,251,777 Bl

Identify document type. 12
Analyze representative e
document instances

A

Select/idesign XML | /~ 14

schema
,l See Fig. 3: SID Schema
Create, test and refine

16
structure inference S
definition (SID)

Yy

‘ repeat

A

A

Open unstructured plain-
text or rich-text document |/~ 20
in host XML-enabled —
wordprocessor See Fig. 2 & Fig. 6.
XML-compatible markup is
stored within the given richtext

/ document via the AP! of the host

Invoke “conversion XML-enabled wordprocessor.
engine” to apply SIDtoa | /~ 22
given document instance
and obtain XML markup

24 ' 26 {28
Perform domain-
Perform manual review specific Obtain pure XML via
and completion of |—P—» postprocessing, host's Save As XML or
generated XML structure editorial and workflow Export XML function
functions

end of structuring/
conversion cycle

___’_/

L

»

Figure 1

U.S. Patent Jul. 31, 2007 Sheet 2 of 15 US 7,251,777 Bl

Structure
h inference See SID schema in Fig.
schema Definition (SID) 3

7~ 36

Conversion engine |4

i dataflow
: Y o >
: 2
: - 0
‘ % 2 reference/dependence
' 2 O >
) ')
i L2 =
= X

y

Target document,

' open in host 38
application

"

'

Export XML

i

XML document 40

Figure 2

US 7,251,777 B1

Sheet 3 of 15

Jul. 31, 2007

U.S. Patent

BLWBYDS UOIIUYS(] SouBIsu| aINPNAS (¢ aInbily4

- e~

useped Bupjeuuod ixa)

—..M

Buins : anjea-
uonesawWNUS ; adA)-

ulaned ixal

|

‘ ‘ 170

wianed @da1d 3xe L
e

JAWAYAY

9 S ydesBesed paurejuon

ool\l pue 1xe)} “sdoud esed ‘aSiN>

| = Jui ; SINDODXEL-
| = JUi SINDDQUILL-
[reuondo] = Buuys : sweu Juawa|a-

<sjuiRIISUOD § susened Bueuno)

j00q ; J03eJ9do Buidno.b-
susaned ydesbesey dnoio wened

85

100q : (euogdo-

89 9
H 99 I/ If
100q : |euol}do-| 1009 : jeuondo-|
uiayed Buies || useped JUBIUOD) utaned Buipean
170 170 170

¢

P

uoijesewnua ; uondo uels esed-pju-|

jusweig ydeiBesed-jeuoydel4

2

ydesBesed Supea

uopjuyeq dnyiew
ydesBesed-qng

95 -/ vg S

b0 L0

¢
_

| S Y

iuetuely :am._wmhum._::s__

juawey ydesBeisey

or

vp S|

sBumas 1eqoj9)

os J 8y
oo {yox)- -

0 = Wi : Ajond-

yled ewsyogs : jebie}-

uonuyeq Juatue)3 aujaseq
L
3 2z
'

Buins : aweu JuaWa|a 10014
|HN 8oedSBLIRY BLIBYDS-

(LuonIuyaQ uo|SIBAUOD, "e"N'E)

uoNIuIeQ 82UB8JU| BINJIN,
vm|\: nieg Ju| 8amonig

U.S. Patent Jul. 31, 2007 Sheet 4 of 15 US 7,251,777 Bl

Le]y]
A~ «TITLE>WORX $TUDIO GUIDE='TIT{E -
ZSUBTITLEXIMPLEMENTING CONVERSICN PROJECTS < $UBTITLE>
: B

2 v P authors ‘I Anthors:
. E YR Author (Christopher}
< B fdname
vi B organizs
- KB Address

uszJohn Chneiopher<: fitlinams>
RlgnsHyeperVision, Lid.< organization>
9808 S Frankin Drive 103
ki< Clve, <Stater W< §
>414-421-8670<phone>
Jeheistopher@hvid.com<. smail>

>

<gIpeesarI3 32« dhoades

Figure 4. Example of Baseline Elements

Legend

Sequence OR group (choice)

A

Figure 5: Example of Element Baseline in a document schema

U.S. Patent Jul. 31, 2007 Sheet 5 of 15 US 7,251,777 Bl

J 22
{ start)

02 [~ 112 (Fig. 8) 22
; Schema Object
Load and validate XML schema; Model (SOM) XML schema
(“conversion schema™) ; in-memory (external)
i representation
104 o 5
3 f Basehne o 5
Load and validate structure | elen:ent mta p:
inference definition (SID) | elemen P ;
n E recognition ; H
i patterns etc. P i

: 114
f106 (Fig. 7) :

Construct BESM
i 116 (Fig.9) | i
(108 (Fig. 10, 13) : i
XML element
iﬁf‘;’:::cr: ::“:;::":2 R structure (internal
9 representation) ;
182 (Fig. 11)
28 120 ;
Original document
APF"y/EXﬁO" oo content + XML markup!._________________________} :

markup
A
end -~————control flow——»

Figure 6: Conversion/structuring process: document parsing, structure inference, and
XML markup creation

U.S. Patent Jul. 31, 2007 Sheet 6 of 15 US 7,251,777 Bl

Obtain root element

name from SID
Fig. 3: 36

Y 106
Map root element J

name to a global XML
schema element

Y

Context CMG =
outer CMG of root
element’s type

CMG = schema content model group

recursive call
/ N

A

recursive call)
for each child (schema

content particle) of
current Context CMG W

Is element] Context CMG :=
CP? no current child group
yes

Context CMG := Baseline
outer CMG of element’s [«-no
) element?
type (if complex type)

yes

¥
Create BESM node;
remember schema
(recursion) context; link to
baseline element
definition

L—'_}—_/

!

v
Combine child BESM nodes;
by applying Order and Group

Occurrence specifiers from
parent (context) CMG

return from
recursive call Figure 7. BESM Construction

U.S. Patent Jul. 31, 2007 Sheet 7 of 15 US 7,251,777 Bl

global schema

type E
[46 E
: 112

Balsellne global schema I
element element i
definition E
: element in i
3 specific :
E context local :
f (anonymous) :
/ | schema type :
BESM state 5

transition

Figure 8. Data-structure relations between baseline elements, the BESM,
and the XML schema

U.S. Patent Jul. 31, 2007 Sheet 8 of 15 US 7,251,777 Bl

FIG. 9 °

title

H subfitle _
fullname i
[start of <author> element]

fullname
ég organization titte
o
&

[document section start]

title
[start of new document section]

&
S city
rod para
g
&/ (=)
state
Note: The BESM transitions
s7 shown here are simple element
; names. In reality, they are full
zip code schema paths {starting from the
e defined root element).
phone
fullname
s9

. imi
email facsimile

fuliname
{ ° email

7

7 i

U.S. Patent Jul. 31, 2007 Sheet 9 of 15 US 7,251,777 Bl

Initialization:

- Basghne element 150
mappings

- BESM

- Initial TCT root

TCT = tentative conversion tree
- 152 CPR = cumulative plausibility rating (180)

» repeat J"OB

Determine leading
conversion step (leaf

TCT node with highest \Eig' 11:180

CPR)
/158 (Fig. 13) [160
156 Discard all root branches
Prune tree? yes—w» Commit TCT root except the one containing

the current leading step;
assign new TCT root

Obtain list of expected/
allowed [baseline] element| s~ 162
transitions from BESM state

of leading TCT node

for each allowed
element transition |

' 164

166

Match baselina
element pattern(s)
tarting from curren

Instance of 182 (Fig. 11). New BESM
state is target of element transition;
yes new document position is just past the

v /168 matched element range;

CPR += baseline elament priority value

Append new TCT node (new
tentative markup step)

Instance of 184. Keep
document position of parent
node;

new BESM state is target of
skipped element transition;
CPR -= skip elem penalty.

Instance of 186. Keep
BESM state of parent node;
document position is
beginning of next
paragraph;

CPR -= skip para penalty.

Append skipped- .
»|element TCT node tﬁﬁ?;?f’p:‘;g?:g&
for each allowed TCT node ™

element transition

o

AND max element
transition gain
satisfactory?

o

176

174

while TCT not empty and ‘
not reached end of
document i\‘ 178

Figure 10: Core structure inference algorithm

U.S. Patent Jul. 31, 2007

Sheet 10 of 15

Tree Node

|

-parent, first child, left sibling, right sibling : Tree Nodﬂ

]

|

TCT Node

180

j»cumulative plausibility rating : int]
+avg transition gain : float

+BESM state

+next document position : int

TT1

Markup Conversion Step

182

+baseline element : Baseline Element Definition
+element range : Text Range

Skipped Element Conversion Step

184

+skipped element : Baseline Element Definition|

US 7,251,777 B1

/‘ 186

Conversion Step

Skipped-to-Next-Paragraph

Figure 11. Tentative conversion tree (TCT) nodes, holding information about tentative
conversion steps within the core structure inference algorithm

U.S. Patent

state = 3
CPR=-6
trans = city

{skip trans)

state = 6
CPR=-9
trans = state

trans = arganization,

statc =4
CPR=-3
trans = street

(skip trans}

state =4
CPR=-6
frans = strect

{skip trans)

state =3
CPR=-9
frans = city’

Jul. 31, 2007 Sheet 11 of 15

US 7,251,777 B1

state = ¢
CPR=0
trans = titke

state = 1
CPR=2
trans = subtitle. fullname

fullname subtitle

state =3

statc =2
CPR =-1

CPR =3
trans = fullname

organization {skip trans) (skip para)

state =3
CPR=0
frans = organization

state =2
CPR=0
trans = fullnane

(skip para) organization

faflname

N

)

state =4
CPR=-2
trans = strect

state =3
CPR=-2
trans = organization

{skip para) {sKip trans} (skip paraj organization

state =4
CPR=-9
frans = street

state =5
CPR=-3

state =4
CPR=-3
frans = street

trans = city

iskip trans) | (skip para) {skip para) street

state =&
CPR=-8
trans = state

state =3
CPR=-8
trans = city

state =4
CPR=-8
trans = strect

state =3
CPR=-1
trans = city

(skip trans) tskip para)

state =6

state =3
CPR=-4 CPR=+
frans = state trans = city
(skip trans)

skip trans) (skip para)

state =7 // state = 6\\ state = 3

(PR=-7 { CPR=-7 | CPR=-7

trans = zip *\ Jrans = state v
~ -

trans = city

Figure 12: Tentative conversion tree sample

U.S. Patent Jul. 31, 2007 Sheet 12 of 15 US 7,251,777 Bl

@gin Commit TCT No@

J 158

elemPath:= full element path
(starting from root element) of
baseline element to be committed;
prevElemPath := full element path
of last committed baseline
element;

Element range comes
from ‘markup conv. step’

TCT node (182).
© 312

320
Define new element instance S
»> for [
elemPath[iStep].ElemName

elemPath[iStep].ElemName™
prevElemPath{iStep].ElemName
?

A

yes yes iStep = iStep + 1

yes

hould start new eleme
branch?

n
iStep <=
length{etemPath

no
v no
¥ /(Fig. 3:54, 62
Extend end position of common - b
ancestor element Create sub-baseline
(elemPath[iStep]); markup
iStep = iStep + 1 —_ 226

346 C_—L:
return

Considers the content model of elemPath[iStep-1},
elemPath[iStep]'s multiplicity specifier, and whether
each of elemPath[iStep..length(elemPath)] can start
a new valid content model group (within its parent).

Figure 13. Committing a TCT node: creating a baseline element, inferring and
creating higher-level structure, and creating sub-baseline markup

U.S. Patent Jul. 31, 2007 Sheet 13 of 15 US 7,251,777 Bl

Marked Up: /book/bookinfo/bockbiblio/authorgroup/author/address/address/email

Conversion State: [document position]; cumulative rating: 20
Expected elements: uri, para, fullname, pubdate, para >>
Matched Elements: uri

Marked Up: /book/bookinfo/bookbiblic/authorgroup/author/adress/uri

Conversion State: [document position]; cumulative rating: 14
Expected elements: para, fullname, pubdate, para >>
Matched Elements: (None)

Skipped to Next Paragraph

Conversion State: [document position]; cumulative rating: 14
Expected elements: para, fullname, pubdate, para >>
Matched Elements: fullname

Marked Up: /book/bookinfo/bookbiblio/authorgroup/author[2]/fullname

Conversion State: [document position]; cumulative rating: 9
Expected elements: organization >>
Matched Elements: crganization

Marked Up: /book/bookinfo/bookbiblio/authorgroup/author{2]/organization

Marked Up: /content/document/section[6)/reference[23]/titlegroupltitle

Conversion State: [document position]; cumulative rating: 453
Expected elements: volume, title >>
Matched Elements: volume

Marked Up: /content/document/section[6)/reference[23]/volume

Conversion State: [document position]; cumulative rating: 452
Expected elements: page >>
Matched Elements: page

Marked Up: /content/document/section[6]/reference[23])/page

Conversion State: [document position], cumulative rating: 453
Expected elements: nhumber, name, heading >>
Matched Elements: (None)

Conversion State: [document position}; cumula
Expected elements: pumber, name, p, heading >>
Matched Elements: p

Marked Up: /content/document/section[B]/p

Conversion State: [document position]; cumulative rating 437
Expected elements: p, heading, heading >>
Matched Elements: p

FIG. 14: Conversion/markup Report samples

US 7,251,777 B1

Sheet 14 of 15

Jul. 31, 2007

U.S. Patent

P 2P0 92Ul SN O 198 pabed
da] [bl= o el=][=] WHMMIM
ploysoue au 8 sidiiexa [ROISSE Y "BIasUE dnsouberp Aq suabnue apueysoeskjod aoepNS §0 UCKRjEp aweu mm
8y} uo paseq S sapads [BUSIIE] AUBL JO UONEOYNUSP! [BI160]03S Y] TUSWILCIAUS SUIPLINOLINS) pue S[j8o dnosSaweu 3
=1 JEUS}OBq BU) USBNSq JalLieq B nyRsucd A3Y) Se eusloeq 1Sow Jo sjueuodiwios jeRuassa ase sapueysoesiiod soeung www M ﬁ
i X . dnosapn =]
:spiomAgy| "suless | Jeaolq s °S jo Ajuofew sy u) uabpue O 4@
dnoJB auy J0 aouasald anIsnoXa) pue pajsa) Sulels SIfeso snoooooidang pue s g 6 Buowe sadoyda Aowsiy g 8
858U Jo swayed Juaisyip [e1aAss pajeaial apieyaoesAiod-0 sy} Jo Aalow auroyooydsoyd sy suiebe pue ucpiuyap @
auoQyEq @]
. leduoniuyap g
ay) isuieBe papaip sqww buisn seipnig “usbiue o dnoib pisyaoueT ay) seyNyIsuEo apueyooeskiod-0) uonuyap
18U} Pamoys Sis[eue [eausyoounww] L) pajeyfjsde-N alj Ul sanpisal suiwesopeleb yoq w3y g ﬁ
pue autjoyooydsoyd jo ssnpisal om} jo “yun Buneada. yoes uj *souasaid aw) Aq PaZUBIoRIEYD S SHIU 'S Jizduoniup 2
; hd uonIuAp
Jo spueyaoeskiod-0 w1 @]
‘sejuownaud ‘g ul paynuap! Aisnomad spueyooesAlod-9) Jo SaINJOrls om) ay) JO 8UO JO Jey; 0} Jjeduoniuysp g
[eonuapi sLOQHORq ajeIpALogIed e sey)} “asojoe|eb-q-Ax0apul-g ‘b ‘Z-0UIE-p-aPIEIBR-Z S| | VY QoM cou__,_w_ww =l WH_
8
Jieduoniuyap
‘paysiiqe)sa sem jun Buneadas apueyooesiod-) uonuysp @ m
auy jo anonns 6uimojjof sy epueyaoesA|od siy) Joj ay-pioe 2104018} UoISSaIdX L pasn uua) g p
AR aM SNU) ‘Op SPIOE Jl0YdIe) JEaISSE Se ajeydsoyd (0J80kiB Jou [ONqL SUIRIUGD JSUBU SIS By | ﬁ%ﬁuﬁﬂ m »
’ .E._ou mm »
:ainpnys Bumoyio) auy i jiun Bureadas sjeydsoyd Jreduoniuyap g
spueyooeserday e sey Jawijod ay-pioe slouoia) ey "Adoososoads YN Aq pue spoyjsiu fediusyd | ku_
Aq paujuuaiap esem sapueyooesAod omy ay) Jo sanns ayy *AydesBojewoio (a6 Aq pajeiedes Ajened L_acwc_m_nwumm M
8q pjnous pue s3nYUS JusIayIp ale sapueyooesAiod oM Y| "ainjonas anbiun e Y apueysoeskjod uonuyap @
aYiI-proe 2ioyois) B pue ‘seuownaud snoaooojdaig saads pajela. Ajpsoj B o uabiue uowiwoo we @ #H_
aU) Se umown| apueyaoesAod-g aLp SUIBILOO JE|XS LRSS | JBAOIQ SIHW SNoa000jdans Jo [em 129 au) yeuneg __acmwﬁwwm M
‘snurey jo Aysienup ‘ABojoununy pue ABoforqasi [EIpop UBLINBIAIZ UBPBSMS ‘SBUPPNH ‘WIMON ‘eYdsor aBuippny dnasBuoniuysp =]
‘enisu; eysujaey] ‘Yuf) PIRAEUY ‘8IS0 YOIEISEY [EONIIDLIELOILPION/E0ZAIOMNBOYORLIOY YOSOIORI SEUISYOS/dRY | ssaippe g
ZUasUALeS ADYS °g 3l pue Zue)y suabopy 'LuosSUBY NUT-1ad *LwonsBIag SEpIN 100000WN3Ud M UOLIWICS U) apuBydcesA|od-0 sweu g
81 yom Labnue o dnosb ay) pue apueysoeskiod ay-poe a10yote) anbiun v ucmw”wmwwﬂm om M »»F
Ulel}s | Jeaolq stiw w:oooooﬁmbw — peayBuILuL g
5 =
H B J0 S3pueyooesA|od pejelnosse-|em (|90 OM JO SBININS dnoidpesBuL
u 2 awnjos &
v [V4 @M_ a]p] w._Bﬂhm
_. » dM35 O[PS XIOM | UOdRY UOISIIAUCD MIAGD [IUaWNI0Q UAAUCD) $z
-v-7-nlas=d] sesE0 [0 o] o] [|04 0| e@BR0
x[4] deH) deH mopupl eigEL spol jpuwod pesuf maA ppg oy
e a0papRy O

gl Ol

US 7,251,777 B1

Sheet 15 of 15

Jul. 31, 2007

U.S. Patent

P 2D 9ZV1 WGV 0L 198S pabey
4l T Tole o al= NMJ'
pleysoue ay) si ojdwexs [eaIssep v "eiashue dnsoubeip Aq suafipue apueyoesAjod soeuns Jo UoKoslap
3y} uo paseq s} 5e1ads [eus)oeq Auell Jo uonesynusp! [e9150]0J8S By JuaLLLONAUS BUIPUNOLNS SU) PUE S(j80
M |eusioEq ay) ussmiaq JaLIE] B e)NiNsuco Asy) SE BUSIOB JSOW JO SjuBUCdWOD |EUSSSS ale sapueydoesAlod soepng S
yasesedpiu
'SPIOMASY] “SURAS | JBADIQ ST 'S J0 Kuofew ey Ut uaBue O Lol =)
dnoib ay} jo aouasald eASNOXa Y} PUB Pajsa) SUIRNS SIIRIO SN20020ldang pue sniw 'S 66 Buowe sedojida =B
asay} jo swaped Jualeyip (BJaASS pajeanal apueysorshlod-n) ay) jo Ajaiow suljousaydsoyd ay jsuiebe pue sanuadoid LoRILYPQ LOISISAUCD -
aucqpeq
auyysuieBe pepaulp sqyw Buisn seipms usbiue o dnoib pipyaouen ey seynsuco apueyoseskjod-0
18U} PAMOYS SISA[EUR [EJILAYDOUNLUL| “ULiO} pajeiAleoe-N 8y Ul sanpisas sujwesoleled yog
puE suljoyoaydsoyd jo sanpisai om} Jo ‘Jun Buiesdal yoea) aouasaid aup Aq pazusjoeseyd SIS S
jo spueysoesiod-n swey sil1s
‘aeuownaud 'g ui paynuapt Asnowesd spueyadesAiod-) Jo SaINon]s om) U} JO SUO JO ey} o) Bumeuiiod Tl
[0RUSP) BUOGHOE] SJRIPAYOQIED B Sy || ‘8s0pe|eb-G-Ax08pL-g ‘p ‘Z-OUIE-(-0DILUEIR0E-Z S [V BJSUM waned 5%
waned Guyted) &
"paysijqe)se sem jun Bupeadai epueyoeskiod-O viane Bupedn a
auj) jo aunjonas fumolioj au L “apueysoesAjod sil) o} ay-pioe dloyols} UoIssaIdXa aLf) pasn \desbeied [euomdes-g
SABL) aMm SN '0p SPIoe D10ynis] [BDISSEID SE eleydsoyd (0180415 Jou (0jiqu SUIBUGD JaLYAU aInjanu)s o)
U p 4oIs] | 1o U l q U Ul @_m_ﬂ_®§.&¢,
‘aimponus Bumolog U yim yun Buneads) ejeydsoyd UOQULAG UOISISAUCY JUWR|T -
apuieyooeseday e sey Jawsjod ayy-pioe slouose) ay | 'Adoosonoads HIAN Ag pue Spoyjawl [edieLd a0 3
Aq paunss)ap aism sapueynoesAiod om au) jo sainons ay| AydesBojewon 136 Aq pajesedes Ajeped N qe
2q piNOYS pue SBINUS Jualaip aIe sapueysesAiod oM 8l] “a:njonys enbiun Uym apueyodeskiod] ?ﬁﬁﬂmﬁ -
a¥I-pioe JI0ydis) B pue ‘sejuownaud snoocooidang se1oeds pajejal Ajasop e Jo uaBijue uowwes dnoJBsweu g'e
U} Se UMOUY apueya0RsAia-0) ol SUIBIUGD JEINS UIBJS | JBADIG SHiW SNOo0o0jdang JO [jem |80 ey, dnosbapa e
P P . - P P . WELUSG dnoibaiou0) e
‘sugtey jo Aysieny) ‘ABojountiau) pue ABojoIGRISI fEOI00H) (7 Uspeems "sBuippnL ‘winAoN ‘feydsor eBuippny O;URURWINOO g
‘symgsu) exsUIaseY ‘) RNABUY 'aRUSD) YAIBESEY [EIIDLIE LOMIOME0EOMEILIOAICD YOS SELLBLOS Il D i pEay e
ZUasUAIBS AOYS "g BN Pue Zuely Susbop ‘| uosSUE(JuZ-1ad ‘jwonshiag sepy BocooLnaud LM LOWILLOD Ul 9PURYO0RSAI0d-) SIWIRUBIO0)
£ 5t Wiym uabinue ¢ dnoub ay pue apueyooesijod axil-poe sloyoia) anbun y AuljRWaNe e
utens | Jeaolq shiw snaoooojdaing - -
. gjo wmﬁtmﬂoomwzoa Pajeosse-|lem ||8d om] JO SaININIS Sweu/dnobsweu/Ispean
] 7 F———————— Jomoig ewaps
g L X X3 | [qTr] DIFFS XIOM
_. - drgag ojprug X:om | 10dey uopIaAuCD) MSIAGD | wewroog 1eALo) §i
B A-IEEEE == s[=0 /[7Hol = J wo]] [-c|RT ¥4 0B BEBRAU
x[= [deH mopujy eigBL sjool jeuuod pest MO w3 el
T sopapp O |

9} "OId

US 7,251,777 B1

1

METHOD AND SYSTEM FOR AUTOMATED
STRUCTURING OF TEXTUAL DOCUMENTS

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims the benefit of U.S. Provi-
sional Patent Application No. 60/463,587 for “Method for
Automated XML-Compatible Structuring of Rich text
Documents Within Microsoft Word” filed Apr. 16, 2003.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present inventions relate to software applications that
aim to automate the generation of extensible markup lan-
guage (XML) structure from plain-text documents, rich-text
documents and textual data records, in which software
provides for implementing the automated inference of XML
structure and application of corresponding XML markup to
target documents and textual data records, and for automated
conversion of unstructured textual documents to XML.

2. Description of the Related Art

Many businesses migrating to XML -based IT solutions
will face the problem of converting large volumes of legacy
documents existing in various storage formats to XML. The
conversion problem also arises in scenarios where XML is
needed by back-end and workflow systems, but document
authors are unwilling or unable to use a specialized XML
authoring tool and typically prefer to work instead in a
generic wordprocessor such as Microsoft Word. Transfor-
mation of unstructured content into XML is one of the most
challenging tasks in many XML-oriented initiatives. In
many multi-channel publishing environments, content con-
version to XML is often a requirement. For such environ-
ments, there is a need for highly effective, fully customizable
conversion of unstructured textual content to XML, without
disrupting communication with authors and content con-
tributors who are using ordinary wordprocessor documents.

There are currently a number of converter software pack-
ages available, most of them classifiable as RTF-to-XML
converters. The basis for this generic classification is the
common assumption that various textual document formats,
such as Microsoft Word and Corel WordPerfect, can be
easily converted to RTF first, with minimal or no loss of
fidelity, and then a single, uniform method can be used for
parsing the RTF data, analyzing text content and formatting,
and producing XML output conforming to some predefined
XML schema/DTD. Similarly, some solutions use HTML or
a proprietary intermediate format. Known software con-
verter packages include XDocs from CambridgeDocs
(Charlestown, Mass.), VorteXML from Datawatch Corpo-
ration (Lowell, Mass.), ContentMaster from Itemfield (Is-
rael), Logictran RTF Converter (Minnetonka, Minn.),
X-ICE by Turnkey Systems (Sydney, Australia), upCast by
Infinity Loop (Germany), YAWC (Ireland) and Omnimark
from Stilo (Bristol, United Kingdom). Typically the basis for
conversion in prior art systems is mapping styles and custom
formatting to XML elements, sometimes using text patterns
as well. Some converters provide integration with a standard
scripting language or define one of their own so that custom
conversion rules and conditions can be expressed, e.g.,
Omnimark from Stilo (Bristol, United Kingdom). It is worth
noting that in most cases mapping of patterns to schema
elements is done ad hoc, without relying on some schema-
guided conversion model that takes into account the element
nesting and validity constraints defined in the target schema.

20

25

30

35

40

45

50

55

60

65

2

More esoteric or special-purpose conversion applications
are known that employ statistical analysis (Bayesian prob-
ability), vector machines, or neural networks as a basis for
more “intelligent” structure inference.

Conversion quality largely depends on the structural
consistency of input documents, the availability and consis-
tency of formatting, the sophistication of the conversion tool
and the extent to which it is properly configured and
optimized for processing of specific document types. The
performance of prior solutions rarely has been satisfactory in
practice. After the initial ‘batch’ processing, an operator or
a content specialist usually needs to review the resulting
XML document(s), manually fix structure inference errors
and create any missing desired structure. Doing this typi-
cally involves using a specialized XML editing tool, which
is independent from and not conveniently integrated with the
conversion tool used in the first place. If it is found that poor
conversion results are due to inconsistent or unexpected
formatting or order of elements in the source unstructured
document, either the document has to be modified to match
the conversion rules and patterns or the latter have to be
modified to account for the variability, and eventually the
whole conversion-review-correction process has to be
repeated. Even in a fully automated conversion process,
human intervention is often unavoidable if semantically and
structurally valid documents are the objective.

A need exists for the provision of quality support for
conversion of unstructured documents to an XML-compat-
ible structured form. To this end, it would be desirable to
facilitate the entire conversion process (document analysis,
definition of conversion rules and patterns, invocation of
automatic parsing and markup generation, and subsequent
review, correction and completion of results) within the GUI
workspace of an XML-enabled generic wordprocessor such
as Microsoft Word, which can be more efficient and conve-
nient than the use of traditional RTF-to-XML converters in
combination with standalone RTF viewers and XML editors.
Further it would be desirable to provide an integrated set of
GUI tools for streamlined review of the conversion results
and automatic identification of omissions and potential
‘trouble spots’ in the document. Another significant advan-
tage of having document conversion functionality built
within an XMI -enabled wordprocessor over other conver-
sion frameworks would be that all the original formatting
and layout of the source document could be preserved,
eliminating the need for manual re-formatting after XML
markup is applied.

Two related additional problems associated with tradi-
tional converters are that 1) they ignore and subsequently
lose significant formatting information and structural clues
from the source document that are not explicitly recognized
and/or somehow incorporated into the output XML data and
2) they separate (branch) the resultant XML document from
the source unstructured document. These deficiencies are a
consequence of the basic fact that existing conversion solu-
tions build or convert to a new XML document from scratch
and create element markup for source content ranges of only
recognized formatting, while pure XML has no provisions
for expressing formatting information. Therefore, ranges
with unrecognized formatting get reduced to plain text in the
output.

In a variety of initiatives involving streamlining of docu-
ment-centric enterprise business processes, conversion to
XML is not an end in itself. Rather, it should be viewed only
a means to enable automated processing of documents and
execution of business logic based on the data contained in
them, while humans continue to consume and update the

US 7,251,777 B1

3

content of their documents, desirably just the way they did
this before introduction of XML in the process. The recent
availability of XML -enabled generic wordprocessor appli-
cations (Microsoft Word 2003+, HyperVision’s WorX for
Word plug-in in conjunction with Word 2000+, Corel Word-
Perfect) creates the novel possibility for automatic applica-
tion of XML-compatible markup to textual documents while
maintaining the documents’ rich-text content intact and
avoiding versioning and content synchronization problems
by essentially keeping the generated XML markup with the
source data (and not having any other copies of the data at
all). XML-aware domain-specific business applications
could be built to operate on thus structured documents
involved in a continuous business process, without burden-
ing users with the complexity of a specialized XML author-
ing tool. Preservation of the original layout (e.g., white
space, pagination, line numbering and the like) is often
desirable and advantageous as a crucial requirement for
many document types, especially the legal documents. Such
applications may also need the ability to have XML struc-
ture/markup applied to select document ranges only, not to
the entire document at once. For example, blocks of unstruc-
tured data, such as customer addresses or standard contract
clauses, may need to be imported from outside and then
automatically structured in accordance with the XML
schema associated with the document. In summary, provid-
ing all such automated XML structuring capabilities and
benefits in the context of XML-enabled wordprocessor
applications is among the objects of the present invention.

SUMMARY OF THE INVENTION

One major aspect of the invention relates to a generic
XML structure inference and construction method that
makes substantial use of element content models (compris-
ing information about element nesting, order, multiplicity,
content validity constraints, element groups, etc.) defined in
the XML schema/DTD in accordance with which unstruc-
tured textual documents are to be marked-up. The method
can be embodied in an engine component, which takes as
input an XML schema/DTD, a structure inference definition
created for a document type based on this schema/DTD, and
operates on a given unstructured document to analyze its
text content and formatting and produce XML structure that
captures the inherent logical structure of the document (as it
may be perceived by a human).

On a basic level, individual elements and element groups
are identified via predefined-pattern search and matching.
Such patterns may include any formatting features present in
the target document type, whitespace and content length
conditions, text literals, keyword lists, wildcards, and regu-
lar expressions, as well as nearly arbitrary logical combina-
tions of such atomic patterns. The search is optimized and
guided using a compilation of the element content model
definitions from the schema. Conceptually, information
about element nesting and validity constraints from the
schema provides the structure inference component with
strong hints about which particular elements to expect at a
given document position, in reference to the current schema
context determined by all previously matched elements
(earlier in the document). This schema-guided search sub-
stantially limits the document localities for testing element
patterns and thus offers several benefits, including requiring
apattern to be evaluated/tested only where an element match
is possible/expected (in a schema-valid document instance);
allowing fairly simple and loosely-defined patterns to be
used and still get the desired matches while minimizing false

20

25

30

35

40

45

50

55

60

65

4

matches; minimizing the number of pattern definitions that
need to be provided by using the available contextual
information to automatically construct higher-level docu-
ment structure (for all elements “above” the ones directly
matched/recognized by explicit patterns); and allowing a
considerably high degree of XML structuring/conversion
accuracy and completeness to be achieved by using an
arbitrary custom schema that is only expected to adequately
model the inherent logical structure of the target documents.

Recognition patterns need to be created only for select
elements from the target XML schema/DTD, called baseline
elements. These are usually leaf-level or near-leaf-level
elements expected to encompass the bulk of the document
text (FIG. 4). Conceptually, such elements typically occur on
an imaginary line (not necessarily continuous) that runs
“across” the schema tree obtained by full recursive expan-
sion of all element content models starting from a single
designated root element (FIG. 5).

A particular embodiment of the above schema-guided
structure inference method entails constructing a single
finite state machine, called baseline element state machine
(BESM), in which transitions are labeled by the identifies of
all baseline elements in specific contexts with respect to the
designated root element. (See samples in FIG. 9.) BESM
construction is done by recursive aggregation of all schema
element content models, starting from the designated root
element and down to the level of designated baseline ele-
ments. Conceptually, the state machine thus constructed has
the capacity to properly validate instances of the target
document type in which all higher-level markup/structure is
stripped so that baseline element instances become imme-
diate children of the root element. For the purpose of guiding
the structure inference process, specifically element pattern
search, the BESM is used as follows. The engine maintains
and updates a current document position and current BESM
state, starting from document position zero and the single
intrinsic start state of the BESM. In each basic step of the
structure inference process, it obtains the set of allowed
BESM transitions from the current BESM state and tries to
match the recognition patterns associated with each corre-
sponding baseline element starting from the current docu-
ment position. Upon a successful match, the current docu-
ment position is advanced beyond the end of the matched
range, and the current BESM state is changed to the sink
state of the BESM transition in accordance with which the
match was made. Special continuation provisions can be
made for situations when this simple iterative process gets
stuck, for example skipping to the beginning of the next
document paragraph or skipping an expected baseline ele-
ment transition in the BESM when no pattern can be
matched at the current document position.

To further refine the method, one particular embodiment
performs a limited look-ahead search and match prioritiza-
tion before committing to any particular apparent baseline
element match in an attempt to resolve naturally-occurring
ambiguities and discrepancies with respect to the expected
document structure (as modeled by the schema) and to
maximize the accuracy and completeness of conversion/
structuring results. This feature can be implemented by
maintaining a tree structure, called tentative conversion tree
(TCT, see FIGS. 11 & 12), which allows prioritized consid-
eration of competing baseline element matches at a single
document location and also provides a natural framework
for implementing the continuation heuristics mentioned
above.

When a single sequence [in natural document order| of
matched baseline elements is settled, all higher-level XML

US 7,251,777 B1

5

structure, up to the designated root element, can be inferred
from the schema context information associated with the
baseline elements and can be constructed as XML markup.
The goal is to obtain “maximally valid” structure according
to the declared content models of all higher-level elements,
having the sequence of baseline elements as fixed leaf-level
nodes in the XML tree. FIG. 13 outlines one possible
implementation of this process.

As a possible extension to the described structure infer-
ence and construction method, provisions can be made for
recognizing and marking-up one or more additional levels of
XML elements within matched baseline elements, such as
for inline elements within a paragraph-extent baseline ele-
ment and for select individual paragraphs within a multi-
paragraph baseline element.

The present invention may be embodied as an add-on to
a qualified host word-processing application, which is
capable of incorporating non-native XMIL-compatible
markup in its documents and has a generic API to its major
functionality, and turn such a host application into a tool and
integrated environment for automated structuring (marking-
up) of textual documents and conversion to XML. Target
documents can be of any format that can be opened or
imported by the host application, for example Microsoft
Word, RTF, HTML, and plain-text. The original content and
appearance of thus structured documents remain intact in the
process by only applying XML -compatible markup via the
API of the host application as a new content layer, only
optionally visible, and tightly correlated with the underlying
rich-text content. The actual structure inference and con-
struction method used can be the one described above or any
other one that can be implemented to operate by means of
the API of the host application. A pure-XML image of the
document thus structured can be obtained via the host
application’s Export XML or Save As XML function (or
equivalent). Document analysis, structure inference defini-
tion development, testing and fine-tuning thereof, and actual
document structuring (marking-up) or conversion to XML,
as well as any domain-specific post-processing and editorial/
workflow functions can all take place within the integrated
graphical user interface (GUI) environment of the host
application and the XML conversion/structuring add-on.
(FIG. 1 shows a generalized overall workflow.)

All of the foregoing aspects and features of the invention
may in principle be realized independently of each other in
different products or product variants and can target different
qualifying host applications. It should also be noted that
even though the present discussion takes the perspective of
describing an “add-on” component for a “host application”,
it is conceivable and quite possible that the essential func-
tionality of such an add-on can be implemented natively
within an application that has the same requisite general
characteristics.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purposes of promoting an understanding of the
principles of the inventions, reference will now be made to
the embodiments illustrated in the drawings and specific
language will be used to describe the same. It will never-
theless be understood that no limitation of the scope of the
invention is thereby intended.

FIG. 1 is a diagram that encompasses the complete
workflow from user’s perspective: document analysis, cre-
ation of a structure inference definition, invoking the con-

20

25

30

35

40

45

55

60

65

6

version/structuring engine to apply markup to a target docu-
ment, and performing any post-processing editorial and
domain-specific functions.

FIG. 2 is a block diagram of the essential dataflow in
relation to the conversion/structuring engine based on the
assumption that the structure inference and creation process
will take place within a qualified XML-enabled wordpro-
Ccessor.

FIG. 3 is a UML class diagram showing a conceptual/
high-level view of the Structure Inference Definition
schema, which governs the creation of concrete structure
inference definitions for specific document types.

FIG. 4 is an example of designated baseline elements
within an already-structured document instance.

FIG. 5 is an example of baseline elements in the context
of an XML schema. It shows the implied element baseline,
which underlies some of the essential concepts in the
schema-guided structure inference method.

FIG. 6 outlines the process of applying a given structure
inference definition to a given unstructured document in
order to obtain XML markup, in the context defined by FIG.
1. The product/result of each high-level step is also shown.

FIG. 7 is a flowchart of the baseline element state machine
(BESM) construction process performed in the context of
FIG. 6.

FIG. 8 illustrates the conceptual/logical relations between
the data structures used at runtime to accommodate the
baseline element definitions, the BESM, and the XML
schema. Resolved baseline element definitions reference
corresponding target XML schema components within an
in-memory schema object model (112).

FIG. 9 shows two sample fragments of constructed base-
line element state machines. Incorporating the identities of
XML elements from different levels of the schema tree into
a single state machine can be seen.

FIG. 10 is a flowchart of the core schema-guided structure
inference and creation algorithm, including maintenance of
atentative conversion tree as a means to implement a limited
look-ahead and to resolve pattern match ambiguities and
discrepancies with respect to the element content models
defined in the schema.

FIG. 11 is a UML class diagram depicting a simple
hierarchy of the tentative conversion tree (TCT) nodes,
holding information about and essentially representing indi-
vidual “conversion” steps within the core structure inference
algorithm.

FIG. 12 provides a snapshot of a TCT produced by the
core algorithm. (Note: markup conversion steps should be
assumed to reference full schema paths. These are the
schema paths associated with the corresponding baseline
elements.)

FIG. 13 is a flowchart detailing step 158 of FIG. 10,
committing a TCT node. This entails creating a baseline
element, inferring and creating higher-level structure in
accordance with the schema path steps of the baseline
element and the respective element content models defined
in the schema, and creating any sub-baseline markup.

FIG. 14 shows two sample fragments of conversion/
structuring reports, derived from the information stored in
the sequence of TCT steps that becomes the actual, final
conversion path. When presented in this form, the report can
aid a user in debugging a structure inference definition and
in identifying trouble spots in the converted/structured docu-
ment. Display elements of the report can be active links to
corresponding document positions, to created XML ele-
ments, and to baseline element selections in an XML schema
GUI browser.

US 7,251,777 B1

7

FIG. 15 shows a structured rich-text document, with
embedded XML markup.

FIG. 16 illustrates what a graphical user interface for
creating a structure inference definition might look like and
how it can be integrated in the workspace of the host
XML-enabled wordprocessor.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present described embodiment is an add-on to
Microsoft Word, version 2000 or newer. It consists of two
major components: an XML structuring engine, also called
conversion engine, and a GUI framework integrated into the
workspace of Microsoft Word for development and execu-
tion of document conversion definitions (FIG. 16).
Microsoft Word 2003 is the first version to have native
support for XML markup associated with a custom XML
schema in its documents, and there is sufficiently granular
API access to the new XML handling capabilities. Thus it
qualifies as an XML-enabled generic wordprocessor and
allows the XML conversion engine to use its API to parse an
open document and apply XML markup to it. HyperVision’s
Word for Word plug-in augments Microsoft Word 2000 and
newer to become an API-enabled, full-fledged XML author-
ing tool as well. (See screenshot of an XML-structured
document in FIG. 15.) The differences between the two
XML-related APIs are almost entirely insignificant in the
context of the following discussion. In fact, most of the
concepts and implementation details have no dependence on
the specifics of the particular XMI -enabled wordprocessor
chosen and could easily be applied to a different one with no
change or with only minimal modification. The present
discussion uses the generic term “XML schema” to refer to
the W3C XML Schema Definition Language, traditional
XML DTDs, and any other language for expressing XML
element validity constraints in terms of element content
models reducible to regular expressions.

FIG. 1 depicts the general workflow in which the current
embodiment is typically engaged. Document analysis, XML
schema design or adaptation, and creation of a structure
inference definition (SID) logically precede the use of the
conversion engine (as well as of any higher-level domain-
specific integrated applications consuming the produced
XML markup), but in practice all these activities may and
often need to be performed in parallel, at least until a point
when the schema design is settled and the SID is completed
and fully “debugged” and fine-tuned to adequately handle
the predominant number of documents belonging to the
target document type. FIG. 2 depicts the operation of the
conversion engine when viewed from an outside, as a black
box. It should be completely self-explanatory given the
preceding background information.

Document analysis is performed at the beginning of each
conversion project. The goal is to identify a relatively
uniform subset of documents, in terms of formatting used
and inherent logical structure. Each such subset constitutes
what is called here a document type and is the basis for
creating or choosing an XML schema and creating a corre-
sponding SID. Given the schema-guided nature of the
present structure inference method, it is crucial that the
inherent logical structure of the documents to be converted
to XML be adequately captured in the schema/DTD, includ-
ing variability such as optional and multi-repetition elements
and element groups of undefined order. But just as creating
element content models that are too tight is undesirable, so
is allowing for too much variability and indefiniteness. The

20

25

30

35

40

45

50

55

60

65

8

conversion engine makes progress through the document by
trying to follow element transitions in the BESM, which
reflect what is considered expected/valid element structure
according to the schema. The closer the guidance, the better
the XML conversion results are likely to be.

When the originally-unstructured document instances are
too inconsistent in structure or formatting, preprocessing
may become necessary (before the SID-driven automatic
structuring). Manual preprocessing may include making any
changes to the documents to bring them into conformance
with the established document type. The SID schema (FIG.
3) has provisions (in the global settings 44) for specifying
certain types of automatic preprocessing. These can include
whitespace normalization (including of paragraph/line
breaks), converting floating text boxes to inlined text, or
running a custom macro to do some cleanup or normaliza-
tion.

The most extensive part of SID creation is defining (and
testing and refining) recognition patterns for paragraph-
extent document elements (48) and for fractional-paragraph
elements (52), which are the main types of baseline elements
in the present design. The third type is multi-paragraph
elements (50), which is somewhat like a composite type and
is discussed later on. The present conversion model chooses
the paragraph level as the basic level of granularity for
document parsing, as most elements in a typical textual
document type tend to be of paragraph extent, and para-
graphs are a distinct unit of content in any wordprocessor.
Restricting text and formatting pattern searches to the range
of a paragraph is also a good performance optimization. For
creating markup below the paragraph level in the context of
a paragraph-extent baseline element, additional text, key-
word and formatting patterns may be defined (54) so that
child elements can be identified and properly delimited.

Fractional-paragraph element definitions are most suit-
able for capturing elements that occur at generally expected
locations in the document with respect to other elements,
singly or in sequence within a paragraph. For example:

Publication date: Aug. 7, 2002
Authors: Harold, J.; Ming, K.
Reviewer: Statty, J.

Here, suppose the date itself is to be enclosed in a <date>
element, while the label “Publication date” remains
unmarked. The following paragraph may need to be marked
up as <authors>, but then each author name needs to be
enclosed in its own element, so <author> is going to be the
target of a fractional-paragraph baseline element definition.

Fractional paragraph elements can be matched by defining
three different patterns for them: an optional or required
leading pattern 64 (typically a text “label”); a pattern 66 for
the element’s content itself (this may be a text pattern, a
wildcard or regular expression pattern or a predefined pat-
tern for recognizing common content types such as dates and
addresses, and the pattern may include formatting features);
and an optional or required trailing pattern or delimiter 68.
When a fractional-paragraph element is matched, matching
of the next expected baseline element(s) is normally
attempted just past the match within the same paragraph.
Options can be specified (for example, in 52) that require or
prohibit a baseline element to start within a paragraph,
versus at the beginning, or an exception to allow a para-
graph-element match to start right after a fractional-para-
graph element within a paragraph.

If any of the above three components of a fractional-
paragraph baseline element definition is missing, appropri-

US 7,251,777 B1

9

ate pattern matching semantics can be defined. For example,
if there is no content pattern defined, the range between the
matches for the trailing and leading patterns implicitly
becomes the element’s range. If there is only a leading
pattern, the content range can include the remainder of the
paragraph.

Multi-paragraph element definitions (50) include multiple
paragraph patterns, in Contained Paragraph definitions 62,
and are most suitable for XML elements spanning multiple
paragraphs of text, not each of which needs to be enclosed
in its own element. The Contained Paragraph definition 62
allows optionally specifying a paragraph element name to be
used for marking-up an individual matched paragraph. A
match for a multi-paragraph baseline element starting from
a given document position is declared if each of the con-
tained paragraph definitions yields a match, in sequence,
with the specified minimum number of paragraphs and up to
the maximum specified number. A possible extension to the
Multi-Paragraph Element definition 50 shown is to allow
including fractional-paragraph element definitions among
the contained paragraph definitions. As a simple example, a
US address block could easily be parsed using such a
definition: The street address is on a line (paragraph) by
itself, but the state, city and ZIP code form a sequence on a
single line. We expect the four element to always appear
together, in this order, hence using a multi-paragraph base-
line element (vs. a separate baseline element definition for
each element). Given successful match of all baseline ele-
ments defined in the schema against the document’s con-
tents, the conversion engine will be able to create all
higher-level markup automatically, up to the root element.
This is possible because in most cases an exactly matching
sequence of baseline elements unambiguously determines
the schema tree context, from which the names of all
enclosing elements can be inferred. The crucial requirement
is that appropriate recognition patterns are defined for all
occurring baseline elements and that these patterns are
matched against the actual document content. Certain types
of exceptions and discrepancies can be handled by the
conversion engine (discussed later), but for the most part the
structure of the documents to be converted should be pre-
dictable and must therefore be modeled closely by the
schema.

At conversion time (FIG. 6), the engine loads the docu-
ment’s target schema/DTD and the associated SID file.
BESM construction (106, detailed in FIG. 7) entails per-
forming a transformation of the schema tree that yields a
single (validation type of) finite state machine, which rep-
resents a flattened view of the document structure wherein
all baseline elements for which recognition patterns have
been defined are viewed as immediate children of the root
element, and all intermediate element levels as well as any
sub-baseline-level elements are removed. (The full schema
paths of all baseline elements are remembered, however, to
enable constructing all higher-level markup.) BESM con-
struction is done based on recursion on the content models
of all schema elements, starting from the designated root
element. In a given context (content model group), a state
machine fragment is obtained for each child content particle
(CP=child element or group), and the fragments are com-
bined according to the context group’s order (choice,
sequence, all) and repetition (*, +, ?) specifiers. For an
element CP, if the element’s path (as determined by the
current chain of recursive calls) can be mapped to the
schema path of a baseline element definition, a state machine
fragment with two new states is created, the transition label

20

25

30

35

40

45

55

60

65

10

being the element’s full path and including a reference to the
baseline element definition in memory (as shown in FIG. 8).
Then the element’s repetition specifier is applied to the state
machine fragment. If there is no corresponding baseline
element, either an error can be returned and the process
terminated or the element can be automatically omitted, as
if it were not declared in the schema. For a group CP, a state
machine fragment is obtained recursively and then the child
group’s repetition specifier is applied.

Note: Instead of working with state machine fragments,
equivalent regular expressions can be used for the interme-
diate results, and the final single regular expression can be
converted to an equivalent state machine, preferably a
deterministic one. The Grail Library, created in the Univer-
sity of Western Ontario, can be used [after some debugging
and optional optimization] for construction and interroga-
tion of finite state machines and regular expressions (among
other related constructs).

Baseline elements are designated as such by means of
schema paths in the SID (that’s the ‘target’ attribute in 46,
FIG. 3). A schema path is a simple XPath-like expression
and consists of one or more steps. The first step must
reference a global schema element or type. Each subsequent
step specifies a child element of its respective parent. A
simple example is ‘address/postal/zip’. Sibling indexing,
like in XPath, can be allowed to distinguish children with the
same name. The schema paths used in baseline element
definitions (BEDs) are defined in terms of the logical
structure of the schema. An XML schema models the
structure of all possible (valid) document instances. The
BESM, however, makes references to specific element
instances, with respect to the designated root element, of the
schema elements and types that are explicitly targeted by
BEDs. For example, if a BED has a schema path of
‘section/title’, there may be multiple element instances (in a
document instance associated with the given schema) to
which this BED is applicable: ‘book/chapter/section/title’,
‘book/appendix/section/title’, etc. Hence, a BESM transition
corresponds to an element instance in a specific context, as
determined during the recursion (vs. the more generic
schema paths used in BEDs). One way to do the mapping is
to compare the current element path during recursion against
the schema paths of all BEDs, step by step, in reverse order,
and choose the longest matching schema path (if any). As a
special case, when the first step of a schema path designates
a schema type, any element of that type can be considered
to match. Using the longest match allows to have one BED
for a baseline element in some general context, for example
‘section/title’, and another for the same element but in a
more specific context, for example ‘appendix/section/title’.

The BESM along with the matching of baseline element
patterns guides the conversion engine during the main
structure inference loop (152-178, FIG. 10). The document
content is parsed sequentially, in a single pass, while a
current state (node) in the BESM is maintained. A <docu-
ment position, BESM state> pair is called conversion state.
Conceptually, it denotes a reachable point in the complete
conversion space, which encompasses all possible conver-
sions (ways of applying XML markup) of a given document
instance. At each step the conversion engine attempts to
make an allowed (“XML-valid”) transition to a different
BESM state by trying to match the pattern defined for the
XML element corresponding to a particular transition
against the text content and formatting properties of the
current document paragraph, sequence of contiguous para-
graphs, or remaining paragraph fraction (166). Each such
successful pattern match (BESM transition) implies a plau-

US 7,251,777 B1

11

sible selection of an XML element for markup of the
matched document range or appropriate sub-range thereof
(depending on the text layout definition of the baseline
element). A new conversion state is obtained as shown in
step 168.

Because multiple elements can be matched at a given
document position, a tree structure, called tentative conver-
sion tree (TCT, FIGS. 11, 12), is built and maintained, which
serves to keep track of all competing element matches, to
prioritize them based on the defined priorities (‘priority’
attribute in 46, FIG. 3), and to ultimately settle on one single
conversion path. Each TCT node corresponds to a reachable
conversion state and has a plausibility rating computed for
it (180), which determines tree pruning decisions. Refer-
ences to the current TCT leaf nodes can be maintained in a
heap (priority list) to efficiently determine the leading step
(TCT node) of the tentative conversion path that should be
furthered in the next iteration of the structure inference
algorithm (154). The TCT needs to be pruned continuously
to limit the number of competing conversion paths. The
condition that triggers pruning (156) can be based on the
length of the current conversion path (which is the distance
between the current leading step node and the TCT root),
some moving average (EWMA-—exponential weighted
moving average) of recent transition gains (transition gains
being the CPR deltas as shown in the annotations to steps
168, 174 and 176), and possibly other internal state infor-
mation.

When no transition is possible from the current conver-
sion state or the best transition gain is unsatisfactory accord-
ing to some predefined measure, and the document end is not
reached yet (172), two main synchronization heuristics are
attempted: skipping one possible BESM transition (174) or
skipping to the next document paragraph (176). Each such
skip results in a different conversion state, with a new leaf
TCT node appended, whose plausibility rating (CPR) will
reflect an appropriate skip penalty. Implicitly, branching of
the TCT results, off the current leading step (node).

When a single conversion path is settled as a result of
repeatedly committing the current TCT root (step 158), the
XML-compatible structure or actual XML markup implied
by it can be constructed. (In general, this can be done either
during or after the core structure inference loop. If after, the
committed TCT root nodes would have to be collected in a
linked list.) Each BESM transition readily provides a base-
line element name. The document range for that element is
obtained from the pattern match information, remembered in
the corresponding TCT node (of type 182). All higher-level
structure is inferred based on the baseline element context
information, nesting, and the full information about the
content models of higher-level elements. One conceptually
straightforward implementation is detailed in FIG. 13. It
employs several simple heuristics to resolve ambiguity and
always aims to produce XML-valid structure. The baseline
element’s path will show what all ancestors are supposed to
be. The element paths of the last committed baseline element
and of the new element can be compared (at 312) step by
step starting from the root. If there is a match, the two
elements could have the same ancestor, and if decided so, the
range of that ancestor will be extended to span the new
element as well (at 316). But if the element names differ or
if analysis of the content models of all children shows that
invalid structure would result, a new branch is started with
the element name of the current step of the new baseline
element’s path (at 320). To illustrate with an example:

20

25

30

35

40

45

50

55

60

65

12

Element path of last baseline element committed: article/
header/pubdate

Element path of new baseline element being committed:
article/section/title

<article> is the only common ancestor, and its end needs to
be extended to cover the new element’s range. Then, new
<section> and <title> elements will be created to enclose
that range. Continuing the example, if the element path of
the next committed baseline element is ‘article/section/
para’, the existing <section> will be extended, and a <para>
sibling will be created next to the <«title>.

A subsequent case wherein analysis of child content
model mandates starting a new element branch:

Last element path: article/section/para

New element path: article/section/title

Here, according to condition 312 alone, the new <title>
should be enclosed in the existing <section>, but because in
the content model of <section> a <title> can occur only as
a first child, we start a new branch (at 320), that is, start a
new <section> and then create the new <title> baseline
element in it. To handle the general case, the content models
of all descendents may need to be considered in order to
make such a branching determination. An alternative, more
robust but also more computation-heavy implementation
can do partial validation at each level of the last committed
baseline element’s path and determine whether the element
at the same corresponding level from the new path can be
part of a valid instance of the respective parent element. This
would work just like normal XML validation, but several
validation state machines would need to be maintained
simultaneously, one for each level of “open” element struc-
ture.

After a matched baseline element is committed and
marked up in the document, any additional sub-baseline
markup can be created (at step 326). In the case of a
paragraph-extent baseline element, the sub-paragraph
markup definition 54 can include patterns for any inline
child elements within the paragraph element. The patterns
can be defined similarly to the patterns for fractional-
paragraph baseline elements, but the conversion engine will
try to find a match throughout the range of the paragraph, not
starting from a single specified position. In the case of
multi-paragraph baseline elements, the match range for each
contained paragraph is already known. If a paragraph ele-
ment name is specified in the associated Contained Para-
graph definition 62, such an element can be created. (Match
information for contained paragraphs can be stored in an
extension to the Markup Conversion Step structure 182 or in
a supporting structure, which is attached to the instance of
182 corresponding to the multi-paragraph baseline element
match.) Further, each Contained Paragraph definition 62 can
include definitions for creating sub-paragraph markup, just
like in the case of paragraph baseline elements.

The actual formatting patterns used in an embodiment can
vary somewhat depending on particular features supported
by the chosen host wordprocessor, but most types are quite
generic. Text patterns can include literals, wildcards (for
example, as supported by Microsoft Word), and regular
expressions. A preferred choice of regular expression syntax
is that of the W3C XML Schema language, as this would
allow xs:pattern values from the target schema to be auto-
matically extracted and used as content patterns for para-
graph and fractional-paragraph elements. Another practi-
cally useful type of text pattern is keyword lists. Such
keyword lists can be specified either in the SID or derived

US 7,251,777 B1

13

from enumeration constraints in the XML schema. Follow-
ing is a summary of the types of atomic patterns, higher-
order pattern constructs, and pattern matching rules perti-
nent to the present embodiment.

General

Whitespace after a previously matched element pattern is
automatically skipped (ignored), including blank para-
graphs and whitespace between the component patterns
of a fractional-paragraph element definition;

Paragraph patterns (58) and formatting patterns (74) can
be combined with Boolean grouping operators: AND,
OR, NOT, XOR; multiple levels of logical composi-
tions can thus be formed;

Numeric properties can be matched with different rela-
tional operators: ==, >, <=, etc; for example, fon-
t_size>=14;

Multiple/alternate pattern sets can be specified for frac-
tional-paragraph elements; for example, one set may
consist of a leading pattern and a trailing pattern, while
another may specify only a content pattern.

Paragraph Patterns and Properties

Indentation: Microsoft Word paragraph property or based
on leading whitespace

Alignment

List format: Word style or based on text patterns

Outline level

Has borders?

Formatting (see below)

Text pattern to be matched at the beginning, within, or
against the entire paragraph

VBA macro-based recognition, possibly in addition to
other, supported patterns

Formatting

Specified paragraph or character style (by name);

Font name, font size, font style (bold, italics, underlined,
superscript, etc.);

All capital letters? ASCII caps or all-caps font;

Using detailed performance information collected during
the structure inference phase, a GUI framework can be
provided to a user to facilitate him/her in any necessary
manual review, completion, and domain-specific post-pro-
cessing of the generated XML markup. Useful functions
provided can be: easy review and navigation of the gener-
ated markup (or some alternate GUI representation thereof);
display of validity information about the markup (with the
help of the host application); display of document ranges
where no structure could be inferred as well as any other
potential “trouble spots” identified according to the opera-
tion and heuristics employed by the structure inference
method; and additional, domain-specific review and edito-
rial functions. For example, the conversion/structuring
report illustrated in FIG. 14 is a rendering of the final, actual
conversion path determined during structure inference. The
underlined elements can be active (for example, mouse-
clickable) links to other GUI objects that visualize the
corresponding schema element, baseline element definition,
created baseline element, or to position the insertion point at
a particular position in the document where pattern match
was attempted.

Pure XML data, conformant to the target schema, can be
obtained via the host application’s native Export/Save XML
function. The structure inference and creation process can be
limited to and applied only to a select document range or
number of ranges. This may be desired in the context of
domain-specific XML-aware applications built on top of the
host and utilizing automated XML structuring capabilities
like described here, for example to automatically mark-up in

25

30

35

40

45

50

55

60

65

14

XML data imported into the document from an external,
non-structured source or text entered by the user.

While the invention has been illustrated and described in
detail in the drawings and foregoing description, the same is
to be considered as illustrative and not restrictive in char-
acter, it being understood that only the preferred embodi-
ments have been shown and described and that all changes
and modifications that come within the spirit of the inven-
tion are desired to be protected. Further modifications in
applications of the principles of the invention as illustrated
therein may be contemplated as would normally occur to
one skilled in the art to which the invention relates.

What is claimed is:

1. A computer-implemented method for applying XML-
compatible markup to unstructured textual documents, the
method comprising:

defining an XML schema in accordance with which

documents are to be marked up;

opening a target document in a host Application Program-

ming Interface (API) enabled wordprocessor applica-
tion configured to store XML -compatible non-native
markup in documents;

using an API of the wordprocessor application to parse

content included in the target document and to perform
element pattern matching to yield inferred XML struc-
ture in accordance with the defined XML schema by
recognizing instances of designated baseline elements
via pattern search and matching and by inferring and
constructing higher-level element structure based on
the defined XML schema; and

storing the inferred XML structure within the target

document as XML-compatible markup via the API of
the wordprocessor application.

2. A method as recited in claim 1 wherein original visual
formatting and textual content of the target document remain
intact after storing the inferred XML structure within the
target document as XML -compatible markup.

3. A method as recited in claim 1 further comprising
limiting XML structure inference and markup creation to a
select range or number of select ranges of the target docu-
ment.

4. A method as recited in claim 1 further comprising
creating a structure inference definition for the defined XML
schema using a dedicated Graphical User Interface (GUI)
integrated in a GUI workspace of the wordprocessor appli-
cation.

5. A method as recited in claim 1 further comprising
presenting a user with a GUI to review trouble spots in the
target document and to manually correct and complete the
automatically generated XML-compatible markup, the
trouble spots comprising unmarked ranges, missing required
elements from the defined XML schema, and inferred XML
structure being invalid according to the defined XML
schema.

6. A method as recited in claim 1 wherein opening a target
document in a host Application Programming Interface
(API) enabled wordprocessor application configured to store
XML-compatible non-native markup in documents includes
opening the target document in a host API enabled word-
processor application that includes a plug-in configured to
store XML-compatible markup.

7. A method as recited in claim 1 further comprising:

identifying a target document type from a set of textual

documents with generally consistent inherent logical
structure and formatting;

creating a structure inference definition for the target

document type comprising a multiplicity of definitions

US 7,251,777 B1

15

of'baseline elements, the baseline elements being select
leaf-level or near-leaf-level elements from the target
document type and having a schema context; and
defining recognition patterns for the baseline elements.
8. A method as recited in claim 7 further comprising
invoking a computer-executable engine to apply the struc-
ture inference definition to one or more instances of the
target document type to produce XML structure relating to
the defined schema, the operation of said engine comprising:
parsing the one or more instances of the target document
type.
9. A method as recited in claim 8 further comprising
defining patterns and structure inference and construction
rules for one or more levels of nested elements in a desig-
nated baseline element, and configuring the computer-ex-
ecutable engine to use said patterns and rules to produce
nested element structure within a text range and the schema
context of a baseline element.
10. A method as recited in claim 8 further comprising:
deriving a state machine having transition labels by
recursive aggregation of schema element content mod-
els, starting from a designated root element and moving
to the level of designated baseline elements;

incorporating identities and specific instances of baseline
elements in the transition labels of the state machine;
and

configuring the computer-executable engine to compile

and use the state machine to consider a relatively small
number of expected baseline elements at a given docu-
ment position.
11. A method as recited in claim 7 wherein creating a
structure inference definition for the target document type
comprising a multiplicity of definitions of baseline elements,
the baseline elements being select leaf-level or near-leaf-
level elements from the target document type and having a
schema context includes identifying a baseline element by a
schema path comprising a sequence of one or more XML
element or element type steps, a first one of the one or more
XML element or element type steps designating a global
schema element or type and each subsequent step designat-
ing a child element or element group of its predecessor.
12. A method as recited in claim 7 further comprising
defining the recognition patterns for the baseline elements to
comprise: text patterns selected from the group of literals,
wildcards, and regular expressions; formatting patterns
selected from the group of font style, font name, font size,
composite style name, paragraph indentation, and outline
level; and logical compositions of atomic text and format-
ting patterns and pattern groups.
13. A method as recited in claim 7 further comprising
defining the recognition patterns for the baseline elements to
comprise:
an optional leading pattern, intended to match a document
range immediately preceding a content range of the
baseline element, allowing intervening whitespace;

an optional content pattern, intended to match the content
range of the baseline element; and

an optional trailing pattern, intended to match a document

range immediately following the content range for the

20

25

30

35

40

45

50

55

16

baseline element, allowing intervening whitespace, an
end document position of the trailing pattern element
serving as a starting position for matching recognition
patterns of following baseline elements.

14. A method as recited in claim 7 wherein the defining of
recognition patterns for the baseline elements comprises
assigning a priority value or pattern weight value which
influences a selection of one baseline element when the
recognition patterns for more than one baseline element
yield competing/ambiguous matches at a particular docu-
ment position.

15. A method as recited in claim 1 wherein opening a
target document in a host Application Programming Inter-
face (API) enabled wordprocessor application configured to
store XML-compatible non-native markup in documents
includes detecting the target document in a predefined
incoming document folder or receiving the target document
via the API from an external client component.

16. A method as recited in claim 15 wherein using an API
of the wordprocessor application to parse content included
in the target document and to perform element pattern
matching to yield inferred XML structure in accordance with
the defined XML schema includes using the API of the
wordprocessor application to automatically parse the con-
tent included in the target document and to perform element
pattern matching to yield inferred XML structure in accor-
dance with the defined XML schema after detecting the
target document in a predefined incoming document folder
or after receiving the target document via the API from the
external client computer.

17. A method as recited in claim 15 further comprising
creating a structure inference definition for the target docu-
ment comprising a multiplicity of definitions of baseline
elements, the baseline elements being select leaf-level or
near-leaf-level elements from the second target document
and having a schema context and defining recognition
patterns for the baseline elements.

18. A method as recited in claim 1 wherein opening a
target document in a host Application Programming Inter-
face (API) enabled wordprocessor application configured to
store XML-compatible non-native markup in each docu-
ment includes opening multiple target documents.

19. A method as recited in claim 18 wherein using an API
of the wordprocessor application to parse content included
in the target document and to perform element pattern
matching to yield inferred XML structure in accordance with
the defined XML schema includes using the API of the
wordprocessor application to parse content included in the
multiple target documents sequentially or in parallel in an
unattended batch mode.

20. A method as recited in claim 18 further comprising
creating a structure inference definition for the multiple
target documents comprising a multiplicity of definitions of
baseline elements, the baseline elements being select leaf-
level or near-leaf-level elements from the multiple docu-
ments and having a schema context and defining recognition
patterns for the baseline elements.

#* #* #* #* #*

